22 research outputs found

    Reducing CSF partial volume effects to enhance diffusion tensor imaging metrics of brain microstructure

    Get PDF
    Technological advances over recent decades now allow for in vivo observation of human brain tissue through the use of neuroimaging methods. While this field originated with techniques capable of capturing macrostructural details of brain anatomy, modern methods such as diffusion tensor imaging (DTI) that are now regularly implemented in research protocols have the ability to characterize brain microstructure. DTI has been used to reveal subtle micro-anatomical abnormalities in the prodromal phase ofº various diseases and also to delineate “normal” age-related changes in brain tissue across the lifespan. Nevertheless, imaging artifact in DTI remains a significant limitation for identifying true neural signatures of disease and brain-behavior relationships. Cerebrospinal fluid (CSF) contamination of brain voxels is a main source of error on DTI scans that causes partial volume effects and reduces the accuracy of tissue characterization. Several methods have been proposed to correct for CSF artifact though many of these methods introduce new limitations that may preclude certain applications. The purpose of this review is to discuss the complexity of signal acquisition as it relates to CSF artifact on DTI scans and review methods of CSF suppression in DTI. We will then discuss a technique that has been recently shown to effectively suppress the CSF signal in DTI data, resulting in fewer errors and improved measurement of brain tissue. This approach and related techniques have the potential to significantly improve our understanding of “normal” brain aging and neuropsychiatric and neurodegenerative diseases. Considerations for next-level applications are discussed

    The emotional modulation of cognitive processing: An fMRI study

    Get PDF
    The functional neuroanatomy of visual processing of surface features of emotionally valenced pictorial stimuli was examined in normal human subjects using functional magnetic resonance imaging (fMRI). Pictorial stimuli were of two types: emotionally negative and neutral pictures. Task performance was slower for the negatively valenced than for the neutral pictures. Significant blood oxygen level dependent (BOLD) increases occurred in the medial and dorsolateral prefrontal cortex, midbrain, substantia innominata, and/or amygdala, and in the posterior cortical visual areas for both stimulus types. Increases were greater for the negatively valenced stimuli. While there was a small but significant BOLD decrease in the subgenual prefrontal cortex, which was larger in response to the negatively valenced pictures, there was an almost complete absence of other decreases prominently seen during the performance of demanding cognitive tasks [Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648--663]. These results provide evidence that the emotional valence and arousing nature of stimuli used during the performance of an attention-demanding cognitive task are reflected in discernable, quantitative changes in the functional anatomy associated with task performance

    A Common Network of Functional Areas for Attention and Eye Movements

    Get PDF
    AbstractFunctional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level

    Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex

    Get PDF
    BACKGROUND: The early visual areas have a clear topographic organization, such that adjacent parts of the cortical surface represent distinct yet adjacent parts of the contralateral visual field. We examined whether cortical regions outside occipital cortex show a similar organization. METHODOLOGY/PRINCIPAL FINDINGS: The BOLD responses to discrete visual field locations that varied in both polar angle and eccentricity were measured using two different tasks. As described previously, numerous occipital regions are both selective for the contralateral visual field and show topographic organization within that field. Extra-occipital regions are also selective for the contralateral visual field, but possess little (or no) topographic organization. A regional analysis demonstrates that this weak topography is not due to increased receptive field size in extra-occipital areas. CONCLUSIONS/SIGNIFICANCE: A number of extra-occipital areas are identified that are sensitive to visual field location. Neurons in these areas corresponding to different locations in the contralateral visual field do not demonstrate any regular or robust topographic organization, but appear instead to be intermixed on the cortical surface. This suggests a shift from processing that is predominately local in visual space, in occipital areas, to global, in extra-occipital areas. Global processing fits with a role for these extra-occipital areas in selecting a spatial locus for attention and/or eye-movements

    Neuronal fiber pathway abnormalities in autism: An initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways

    No full text
    MRI diffusion-tensor tracking (DTT) was performed in 17 high-functioning adolescents/adults with autism and 17 pairwise-matched controls. White matter pathways involved in face processing were examined due to the relevance of face perception to the social symptoms of autism, and due to known behavioral and functional imaging findings in autism. The hippocampo-fusiform (HF) and amygdalo-fusiform (AF) pathways had normal size and shape but abnormal microstructure in the autism group. The right HF had reduced across-fiber diffusivity (D-min) compared with controls, opposite to the whole-brain effect of increased D-min. In contrast, left HF, right AF, and left AF had increased D-min and increased along-fiber diffusivity (D-max), more consistent with the whole-brain effect. There was a general loss of lateralization compared with controls. The right HF D-min was markedly low in the autism subgroup with lower Benton face recognition scores, compared with the lower-Benton control subgroup, and compared with the higher-Benton autism subgroup. Similar behavioral relationships were found for performance IQ. Such results suggest an early functionally-significant pathological process in right HF consistent with small-diameter axons (with correspondingly slower neural transmission) and/or higher packing density. In left AF and HF, changes were interpreted as secondary, possibly reflecting axonal loss and/or decreased myelination. © 2008 INS. Published by Cambridge University Press

    Topographic organization of macaque area LIP

    No full text
    Despite several attempts to define retinotopic maps in the macaque lateral intraparietal area (LIP) using histological, electrophysiological, and neuroimaging methods, the degree to which this area is topographically organized remains controversial. We recorded blood oxygenation level–dependent signals with functional MRI from two macaques performing a difficult visual search task on stimuli presented at the fovea or in the periphery of the visual field. The results revealed the presence of a single topographic representation of the contralateral hemifield in the ventral subdivision of the LIP (LIPv) in both hemispheres of both monkeys. Also, a foveal representation was localized in rostral LIPv rather than in dorsal LIP (LIPd) as previous experiments had suggested. Finally, both LIPd and LIPv responded only to contralateral stimuli. In contrast, human studies have reported multiple topographic maps in intraparietal cortex and robust responses to ipsilateral stimuli. These blood oxygenation level–dependent functional MRI results provide clear evidence for the topographic organization of macaque LIP that complements the results of previous electrophysiology studies, and also reveal some unexpected characteristics of this organization that have eluded these previous studies. The results also delineate organizational differences between LIPv and LIPd, providing support for these two histologically defined areas may subserve different visuospatial functions. Finally, these findings point to potential evolutionary differences in functional organization with human posterior parietal cortex
    corecore